The pressure transmitters of the 21Y series have no internal seal and a high insulation voltage of 300 VDC, and are extremely resistant to environmental influences. The sophisticated compensation circuit makes it possible to specify a narrow total error band. A wide range of pressure connections and electrical connections are available to choose from.
The pressure transmitters of the 7LD series use the chip-in-oil technology developed by KELLER, uniting a pressure measuring cell, digital temperature compensation and signal processing in a compact housing made of stainless steel or Hastelloy. The transmitters are extremely resistant to environmental influences and delivery highly accurate measurement results as a digital output signal. The I2C interface and the low supply voltages make it easy to integrate in microcontroller-based systems. The extremely low power consumption is ideal for battery-operated devices. The D line is perfect for IoT solutions.
The low-cost OEM pressure transducers of the 6S series are based on a piezoresistive measuring cell with a brazed metal diaphragm in a steel housing.
Windows software for communicating with connected KELLER devices. PressureSuite Desktop offers all the options for device configuration and displays current measured values and logger recordings in graph form. Thanks to the search and filter options, saved measurement data can be organised with ease and exported as an image, as an Excel or Word report, or in additional formats. All PressureSuite products are intercompatible and can exchange data with one another. The functions are continually being further expanded and optimised.
The Series PD-39 X does not measure the differential pressure directly – instead, it uses two absolute pressure sensors to take the measurement indirectly. As well as reducing costs, this differential pressure transmitter is also more robust in relation to unbalanced (one-sided) overloading. The differential pressure range should be at least 5% of the standard pressure range. Each pressure side has two pressure connections, so the Pressure measurements can be displayed and recorded on PC or Laptop with help of the software ControlCenterSeries30 (CCS30) and a seriel interface cable. Export of recordings to usual file formats possible. Up to 128 devices can be connected together into a KELLER Bus-system. The Series PD-39 X does not measure the differential pressure directly - instead, it uses two absolute pressure sensors to take the measurement indirectly. As well as reducing costs, this differential pressure transmitter is also more robust in relation to unbalanced (one-sided) overloading. The differential pressure range should be at least 5% of the standard pressure range. Each pressure side has two pressure connections, so the PD-39 X is easy to use in pressure lines So that the differential pressure can also be measured exactly if the standard pressure range/ differential pressure ratio is high, this series also features the tried-and-tested microprocessorbased technology that is used in Series 30 X. All reproducible pressure sensor errors (i.e. nonlinearities and temperature dependencies) are entirely eliminated thanks to mathematical error compensation. The sensor signals are measured with a 16-bit A/D converter, so the individual standard pressure ranges can be measured to an accuracy of 0,05%FS throughout the entire pressure and temperature range. Digital Interface The transmitters have a bus-compatible two-wire RS485 half-duplex interface which is modelled on the ”MODBUS RTU”. KELLER offers interface converters to RS232 or USB for use here. The READ30/PROG30 program and the protocol are freely available. The interface offers these capabilities: - Readout of pressure and temperature values for both sensors. This allows readout of the diffe- rential pressure as well as the two standard pressure ranges. - Calibration of zero points and amplification. - Scaling of the analog output to different pressure ranges or units. - Configuration settings such as measurement rate, low-pass (LP) filter, bus address, etc. - Readout of information such as serial number, compensated pressure and temperature ranges, etc. Analog Output The analog output is freely scalable via the interface. For flow measurements, the root of the differential pressure can also be outputted. The calculated value can be outputted via an analog interface (0…10 V or 4…20 mA).
The high-accuracy LEO-Record-Ei digital manometers can record pressure and temperature autonomously for long periods thanks to their memory function. The data logger can be connected to a computer via the RS485 interface for configuration and for reading out the recorded data. The current pressure value can be displayed in a wide variety of units of pressure. Power is supplied by a high-quality 3,6 V lithium battery.
Intrinsically safe – suitable for use in explosive atmospheres.
The vacuum test pump LR-Cal 2941 is used to generate vacuum (negative pressure) for checking, adjusting and calibrating mechanical and electronic pressure measuring instruments by comparative measurements. These vacuum tests may be carried out in laboratories, workshop or on site at the measuring point. If the instrument to be tested and a sufficiently accurate reference measuring instrument are connected up to the test pump, the same vacuum is applied to the two measuring instruments when the vacuum test pump LR-Cal 2941 is is operated. By comparing the two measure valuses at random pressure values, the accuracy can be verified or the instrument under test can be adjusted. Despite its compact dimensions, the vacuum test pump LR-Cal 2941 is easy to operate and allows for exact generation of the required test vacuum. The LR-Cal 2941 is fitted with a fine adjustment valve for precise adjustment of vacuum. Pressure connection is made with 4 mm hose, a T-piece wich quick-coupling and a piece of hose is included in standard delivery.
Series 22 DT was developed and homologated specially for use in so-called "bivalent" vehicles fitted with engines for combined natural gas/gasoline operation. The unconventional design with a small mass swept by the flow results in a fast response with temperature changes, the temperature being measured by an NTC or PT sensor located directly behind the stainless steel separating diaphragm. The same diaphragm transmits pressure via a capillary to a stress-free mounted silicon measuring cell. The signal processing for pressure and temperature is carried out by an electronic module connected to the sensors by flexible conductors. Mounted to the back of the electronic module, which is directly connected to the 6-pole plug connector are the EMC protection components. A special feature is the immunity from interference from electromagnetic fields up to 200 V/m.
The pressure transmitters of the 21C series with ratiometric 0,5...4,5V output combine chip-in-oil measuring cells with conventional electrical connections and pressure connections, making them ideal for industrial use. The transmitters are extremely resistant to environmental influences and deliver accurate measurement results over a temperature range of -40 °C to 125 °C.
In the 23SXc series high-precision pressure transmitters, temperature dependencies and non-linearity are precisely compensated for by means of a mathematical model in the microcontroller. With the CANopen interface, KELLER offers a highly accurate pressure transmitter that is optimally suited for a wide variety of automation solutions. The fully welded construction without internal seals is suitable for dynamic applications. Only stainless steel is in contact with the media.
In the 23SX series high-precision pressure transmitters, temperature dependencies and non-linearity are precisely compensated for by means of a mathematical model in the microcontroller. In addition to the RS485 interface with Modbus RTU protocol, there is also the option of outputting the measurement results as a scalable analogue signal via the integrated D/A converter. The fully welded construction without internal seals is suitable for dynamic applications. Only stainless steel is in contact with the media.
The pressure transducers of the 9L series have a compact, robust housing made of stainless steel, giving them outstanding long-term stability for a range of OEM applications. The metal diaphragm is welded on front-flush and gap-free, separating off the piezoresistive pressure sensor, which is made of silicon, from the measuring medium. Every pressure transducer is measured over the entire pressure and temperature profile and is supplied with a detailed calibration sheet .
The Series 41 X combines the ceramic measurement cell for low pressure ranges with the µP electronics of the digital Series 30 transmitter. The pressure values from the signals of the pressure and temperature sensors are determined by polynomial compensation (see reverse). The values can be displayed and stored on a PC via an RS485 interface and programming can also be carried out. The transmitters are calibrated to the base range. The PROG30 software permits programming of the analog output signal in each section of the range within the base range (e.g. range 100 mbar. Output 4…20 mA for 20…60 mbar). With KELLER RS converters K-100 Series, up to 128 transmitters can be hooked together into a bus system and read by means of a PC or laptop. READ30 software allows the current pressure of each transmitter to be read or the pressure activity of several transmitters to be recorded or stored whilst “on line”.
Series 22 offers a reliable cost effective solution for customers requiring medium to high quantities, of mass produced transmitters. Utilising the KELLER automatic brazing lines, this new technology allows crevice-free construction of the pressure port with no internal seals or O-rings, making possible high volumes at low cost. In the brass 22 M, a steel insert and a nickel diaphragm are brazed into a brass housing. In the steel 22 S, all parts are stainless steel (AISI 316 L). The glass feed-through header and silicon pressure sensor are welded to the steel insert underneath the oil filling. The electronic circuit is fitted to the Packard plug. EMC-protection-components are mounted on the plug side, the amplifier on the sensor side. A flexible printed circuit “TAB” connects the sensor with the electronics. The transmitters are designed to have exceptionally good EMC ratings and operate over a wide temperature band, ideal for automotive, hydraulic and refrigeration control applications
The Series PRD-33 X was developed for applications that require a high accuracy differential pressure measurement together with high overload resistance in differential pressure ranges as low as 350 mbar. The Series PRD-33 X is the result of ongoing development of the KELLER PD-33 X differential pressure transmitter. Thanks to a second integrated pressure sensor, the line, or common mode, pressure can now be measured along with the differential pressure, resulting in several notable features not found in traditional differential pressure transmitters. For example, compensation for line pressure effect is now accomplished during factory calibration. Moreover, both differential and line (absolute) pressure may be read by the user. In addition, the PRD-33 X features high differential overload resistance; e.g., ± 35 bar with a differential measuring range of only 350 mbar (100:1). The internal differential pressure sensor element is isolated from the High (+) side media by a compliant stainless steel diaphragm, while the Low (-) side media impinges directly on the back side of the silicon measuring cell. Also isolated from the High (+) side media is the line (absolute) pressure sensor. The floating sensor assembly guarantees maximum decoupling from external mechanical forces. Another notable feature of the Series PRD-33 X is the robust digital RS485 bi-directional communication interface. Information such as serial number, pressure range, filter settings and process values for both differential and line (absolute) pressures and their temperatures are easily obtained. This combination of features enables certain measurements not possible with traditional differential pressure transmitters. For example, filling levels in liquefied gas storage tanks, including oxygen, nitrogen, carbon dioxide and argon can now be measured safely, accurately and at reasonable cost.
The pressure test pump LR-Cal 2911 is used to generate pressure for checking, adjusting and calibrating mechanical and electronic pressure measuring instruments by comparative measurements. These pressure tests may be carried out in laboratories, workshop or on site at the measuring point. If the instrument to be tested and a sufficiently accurate reference measuring instrument are connected up to the test pump, the same pressure is applied to the two measuring instruments when the pressure test pump LR-Cal 2911 is is operated. By comparing the two measure valuses at random pressure values, the accuracy can be verified or the instrument under test can be adjusted. Despite its compact dimensions, the pressure test pump LR-Cal 2911 is easy to operate and allows for exact generation of the required test pressure. The LR-Cal 2911 is fitted with a fine adjustment valve for precise adjustment of pressures. Pressure connection is made with 4 mm hose, a T-piece wich quick-coupling and a piece of hose is included in standard delivery.
Digital Output of Transmitter: This high precision of 0,01 %FS is available as an option (the standard Series 33 X has an accuracy of 0,05 %FS). These Series are based on the stable, floating piezoresisitive transducer and the newly developed XEMICS micro-processor with integrated 16 bit A/D converter. Temperature dependencies and non-linearities of the sensor are mathematically compensated. Transmitter with Analog Output: Integrated in the XEMICS processor is a D/A converter of 16 bit for analog signal outputs of 4…20 mA or 0…10 V. The output rate is 400 Hz. The accuracy is diminished by this converting process by 0,05 %FS. The digital output is available on all transmitters with analog output. Programming With the KELLER software READ30 and PROG 30, a RS485 converter (i.e. K102 or K107 from KELLER) and a PC, the pressure can be displayed, the units changed, a new gain or zero set. The analog output can be set to any range within the compensated range. Accuracy and Precision “Accuracy” is an absolute term, “Precision” a relative term. Dead weight testers are primary standards for pressure, where the pressure is defined by the primary values of mass, length and time. Highest class primary standards in national laboratories indicate the uncertainty of their pressure references with 70 to 90 ppM or close to 0,01%. Commercial dead weight testers as used in our facilities to calibrate the transmitters indicate an uncertainty or accuracy of 0,025%. Below these levels, KELLER use the expression “Precision” as the ability of a pressure transmitter to be at each pressure point within 0.01 %FS relative to these commercial standards. The transmitter’s full-scale output can be set up to match any standard of your choice by correcting the gain with the PROG30 software.
The pressure transducers of the PD-10L series have been developed to measure differential pressure. These OEM pressure transducers have a single silicon diaphragm in their interior, which is pressurised from both sides and measures the pressure difference directly. This design enables them to measure tiny pressure differences even at an extremely high line pressure.
The pressure test pump LR-Cal LPP 40 is used to generate pressure and vacuum for checking, adjusting and calibrating mechanical and electronic pressure measuring instruments by comparative measurements. These pressure tests may be carried out in laboratories, workshop or on site at the measuring point. If the instrument to be tested and a sufficiently accurate reference measuring instrument are connected up to the test pump, the same pressure is applied to the two measuring instruments when the pressure test pump LR-Cal LPP 40 is operated. By comparing the two measure valuses at random pressure values, the accuracy can be verified or the instrument under test can be adjusted. Despite its compact dimensions, the pressure test pump LR-Cal LPP 40 is easy to operate and allows for exact generation of the required test pressures; a change-over switch enables the generation of vacuum as well. The LR-Cal LPP 40 is fitted with a fine adjustment valve for generation of high pressure and a precise adjustment of pressures. The reference instrument is screwd directly on the top of the pump and the unit under test is connected by means of the connection tube incorporating an adapter 1/4" BSP female thread (freely rotating), contained in the scope of delivery.
Piezoresistive pressure transmitter for applications in bio-reactors or autoclaves. The transmitter is compensated up to 150 °C and may be operated continuously or sterilised at this level, including the special circuit electronics The transmitters are supplied in absolute or gauge versions, with current or voltage output. The sensing component is a micro-machined silicon pressure chip of high sensitivity. An independent temperature sensor is integrated on the surface of the silicon chip
The compact LEO2-Ei digital manometers are budget-friendly and provide high accuracy. The minimum or maximum value since the last reset can be displayed at the same time as the current pressure value in a wide variety of units of pressure. The swivel adapter allows the device to be optimally positioned. Power is supplied by a conventional CR2430 coin cell battery (provided).
The pressure test pump LR-Cal LPP 08 is used to generate pressure and vacuum for checking, adjusting and calibrating mechanical and electronic pressure measuring instruments by comparative measurements in the low-pressure and vacuum range. The pressure tests may be carried out in laboratories, workshops or on-site at the measuring point.
If the instrument to be tested and a sufficiently accurate reference measuring instrument are connected up to the pressure test pump, the same pressure is applied to the two measuring instruments when the pump is operated. By comparing the two measure values at random pressure values, the accuracy can be verified or the unit under test can be adjusted.
The LR-Cal LPP 08 is a pneumatic pressure test pump for low-pressure ranges up to 8 bar with a change-over switch to vacuum down to -850 mbar. Despite its compact dimensions, the pressure test pump is easy to operate and allows for the exact generation of the required test pressures. The maximum pressure or vacuum achievable depends on the attached test volume. The smooth-running pressure generation and the integrated fine adjustment valve allow a safe and precise setting of very small positive resp. negative pressure values in the range of mbar.
The unit under test and the reference instrument can be easily connected with the supplied accessories.
Included in the scope of standard delivery:
Ultramodern welding techniques and advances in the miniaturization of electronic circuits now make it possible to manufacture a pre-insulated, piezoresistive micro-transmitter with properties that were no more than a dream 10 years ago. The circuit is based on the PromComp principle which KELLER offered in a separate version as a laboratory device 20 years ago when it attained accuracy of 0,1 %FS over a temperature range of 100 K. In those days the electronic circuitry was the size of a cigar box, but now it can be accommodated on a print that is a mere 12 mm in diameter. Although this digital component is only slightly more expensive to produce than an analog circuit, it allows a piezoresistive sensor to be calibrated to an accuracy of 0,5 %FS over a potential temperature range of 100 K. A temperature sensor divides the temperature range into fields with a width of 1,5 K each. Two values are assigned to each field in an EEPROM: one value for the zero point and another for the amplification, determined by mathematical interpolation in the calibration process. During operation, the corresponding values are ‚switched in’ at the relevant temperatures. The electronics make it possible to assign up to 120 fields so that a temperature range of 180 K can be covered. The 100 K restriction for series 21 PY is due to the sensor This means that more or less any temperature can be the ‚calibration temperature’ for these transmitters. Calibration and temperature errors within a temperature field are within ± 0,2 %FS. The remainder of the error bandwidth of ± 0,5 %FS can be attributed to linearity and stability errors. So it’s goodbye to the days when sensor engineers had to struggle every day with TKN (zero point) and TKG (gain/amplification) problems. The 21 PY product line is outstanding due to its extreme ruggedness towards electromagnetic fields. The limits of the CE standard are undercut by a factor of up to 10 with conducted and radiated fields, thus making this product ideal for use in harsh industrial environments.
The Y-line transmitters have an extremely small temperature error. This is achieved using an additional circuit containing a temperature sensor that subdivides the temperature range into fields that are 1,5 Kelvin (K) wide. The TK zero and TK compensation values are calculated for each field and programmed into the additional circuit. During operation, these values are fed into the analogue signal path depending on the temperature. Each temperature is the "calibration temperature" for this transmitter. The Series 23 (S)Y/25 Y product line is outstanding due to its extreme ruggedness towards electromagnetic fields. The limits of the CE standard are undercut by a factor of up to 10 with conducted and radiated fields.